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Figure S1 

Distribution of mutations across tumor types and relationship between 
SCNA level and number of driver mutations in DNA damage pathway 

(A) Distribution of the number of mutations in exons across different tumor types. 

The plots show that for the tumor types CRC, UCEC and STAD there is a 

bimodal distribution. The subset of tumor samples with higher number (N) of 

mutations is considered hypermutated, as indicated (see also Methods and Table 

S1a). 

(B) Relationship between the SCNA level and driver mutations in the DNA 

damage pathway across tumor types. The relationship between the SCNA level 

and the presence of at least one functionally relevant mutation in TSGs or OGs 
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involved in the DNA damage pathway is shown as a boxplot. The p-value 

(Wilcoxon test) is shown. For each tumor type, the hypermutated samples were 

excluded (see Methods). 

 

Figure S2  

Enrichment in DNA replication, cell cycle pathways and chromosome 
maintenance in high versus low aneuploidy tumors 

(A, B) GSEA analysis on the pan-cancer dataset. RNAseq analysis was 

performed as a pan-cancer analysis by comparing tumors with high versus low 

SCNA level and considering tumor type as a covariate (EdgeR package). GSEA 

plots, ES (enrichment score) and FDRs are shown for representative pathways 

enriched in high versus low aneuploidy tumors (A). In (B) the log2 fold change 

(log2FC) between high versus low aneuploidy tumors and corresponding FDR 

(EdgeR analysis) are shown for representative genes. See also Table S3a-b. 
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(C) Difference in the ratio between P-Chk1 (S345) and total Chk1 levels in high 

and low aneuploidy tumors (pan-cancer analysis, normalized per tumor type). 

The ratio between P-Chk1 and total Chk1 was determined for each tumor sample 

utilizing the TCGA RPPA dataset (74). The p-value for the Wilcoxon test is 

shown. 

(D) GSEA analysis on the tumor type-specific datasets. For each tumor type, 

RNAseq analysis was performed comparing tumors with high versus low SCNA 

levels as in (A). GSEA analysis was performed as in (A) and the FDR values for 

the indicated tumor type and pathway are shown. 0.00 indicates a FDR <e-2. 

See also Table S4a. 
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Figure S3 

Enrichment in DNA replication and mitotic pathways in high versus low 
aneuploidy tumors within individual tumor types. 

RNAseq analysis was performed comparing high versus low aneuploidy tumors 

from each indicated tumor type and GSEA was performed as in Fig. S2D. GSEA 

plot and FDR are shown for representative pathways enriched in high versus low 

aneuploidy tumors (see also Table 4a). 
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Figure S4 

Depletion in the CD8 TCR pathway and the Interferon gamma signaling 
pathway in high versus low aneuploidy tumors within individual tumor 
types. 

RNAseq analysis was performed comparing high versus low aneuploidy tumors 

from each indicated tumor type and GSEA was performed as in Fig. 2C.  GSEA 

plots and FDRs for representative pathways depleted in high versus low 

aneuploidy tumors are shown (see also Table 4b). 

  



	
   7	
  

Figure S5 

Analysis of specific immune molecules in tumors with high versus low 
aneuploidy within individual tumor types.   

 (A) Specific changes of pro-inflammatory and anti-inflammatory gene expression 

in the pan-cancer analysis.  The ratio between the average expression level (log2 

transformed RSEM value) of pro-inflammatory (IFNG, IL-1, IL-2) versus anti-

inflammatory genes (TGFB1, IL-10, IL-4, IL-11) was calculated in each tumor 

sample and the change in the distribution of this parameter between tumors with 

low and high aneuploidy is shown for individual tumor types as boxplots.  

(B) The ratio between the average expression level (log2 transformed RSEM 

value) of the markers specific for CD8 effector T cells versus Treg cells was 

calculated for each tumor, based on the gene sets used for Fig. 3C (Table S4d). 

The distribution of this ratio between low and high aneuploidy tumors is shown 

for individual tumor types as boxplots. 
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Figure S6 

Analysis of the ratio between M1 and M2 macrophages within individual 
tumor types.   

The ratio between the average expression level (log2 transformed RSEM value) 

of the markers specific for M1 and M2 macrophages was calculated for each 

tumor, based on the gene sets used for Fig. 3D (Table S4d). The distribution of 

this ratio between low and high aneuploidy tumors is shown for individual tumor 

types as boxplots. 
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Figure S7 

The relationship between the focal SCNA level and the cell cycle signature 
score in individual tumor types. 

The relationship between cell cycle signature score and the focal SCNA score in 

individual tumor types. For each tumor type a plot is shown, containing the cell 

cycle signature (y-axis) versus the focal SCNA level (x-axis) in each sample. The 

Spearman correlation coefficient and p-value are shown.  

  



	
   10	
  

 

Figure S8 

The relationship between the SCNA level normalized by event size and the 
immune signature score. 

The ‘SCNA level normalized by size’ represents the integrated level of SCNAs in 

each tumor sample. To determine this SCNA level, we considered 800 genomic 

regions corresponding to cytogenetic bands and for each region we determined 

its copy number level (amplification/deletion). The ‘SCNA level normalized by 

size’ represents the sum of these genomic regions deleted or amplified (see 

Methods). For each tumor type a plot is shown, containing the immune signature 

score (y-axis) versus the SCNA level normalized by size (x-axis) in each tumor 

sample. The Spearman correlation coefficient and p-value are shown. 
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Figure S9 

Role of SCNA level and N of mutations in predicting survival in melanoma 
patients not treated with immunotherapy. 

(A, B) Survival analysis for the number of mutations (A) and the SCNA level (B) 

in melanoma patients from the TCGA dataset not treated with immunotherapy. 

The number of mutations and the SCNA level were utilized as individual 

predictors of survival in a univariate Cox proportional hazards models. In all 

cases, patients were stratified in two groups, utilizing the median of the 

parameter as a cutoff (upper or lower 50%). HR and Wald test p-values from the 

Cox proportional hazards model comparing the two groups of patients are shown. 

Kaplan-Meyer survival curves for patients stratified in the two groups are shown 

(Table S6c). 
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(C) The aneuploidy-associated gene expression signature was derived from 

genes showing a positive correlation with the SCNA level and a negative 

correlation with the immune infiltrate signature was derived based on the TCGA 

dataset of melanoma samples (Table S6e). This gene expression signature was 

utilized to rank the tumor samples from the dataset of melanoma patients treated 

with immunotherapy (26) (based on the average expression level). Survival 

analysis was then performed by comparing the tumors with a gene expression 

signature higher or lower than the median level. Kaplan-Meyer survival curves, 

HR and Wald test p- are shown.  
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Legends to Supplementary Tables 

Table S1: Information on the tumor dataset and SCNA events  

Table S1a: Information on the tumor dataset including the abbreviation and 

description for each tumor type and the total number of samples for each tumor 

type. This table also contains the median of the estimated purity across samples 

(median purity estimate) and the noise threshold utilized for SCNA calls 

(threshold used for SCNA calls) in each tumor type. The median purity estimate 

was derived from ABSOLUTE calls (3, 59) when available or, when not available, 

from the pathology report (see Methods). Finally, this table also contains the 

threshold in the number of mutations in exons to define hypermutated tumors for 

each tumor type. Samples with a number of mutations in exons higher than this 

threshold were considered hypermutated samples. 

Table S1b: List of focal amplification events derived from GISTIC2 analysis 

performed on all tumor samples. 

Table S1c: List of focal deletion events derived from GISTIC2 analysis 

performed on all tumor samples. 

Table S1d: List of chromosome, arm and focal SCNA events considered. 

 

Table S2: Analysis of mutations in specific pathways 

Table S2a: List of TSGs and OGs predicted by TUSON Explorer (11) and utilized 

for different analyses in this paper. 

Table S2b: List of TSGs and OGs (from TUSON Explorer) involved in specific 

cellular pathways utilized for the analyses in Fig. 1C-D, Fig. S1B and Table S2d. 

For each cancer-related pathway, the list of TSGs and OGs involved in it that 

pathway are shown. 
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Table S2c: Tumor type-specific analysis showing the relationship between the 

number of SCNAs and the mutations in passenger genes, driver genes, and the 

ratio between number of mutations in drivers over the number of mutations in 

passengers. The hypermutated samples were excluded (see Methods). The 

correlation coefficient and p-value between the SCNA level and the number of 

mutations in the indicated classes of genes are shown. See also Fig. 1B.  

Table S2d: For each tumor type, the correlation between the SCNA level and the 

number of mutations in driver genes (TSGs and OGs) involved in the indicated 

pathways was derived. P-values and correlation coefficients are shown for each 

tumor type.  

Table S2e: Analysis of the correlation between the SCNA level and the number 

of mutations in passengers and drivers. This analysis is similar to the one 

described in Fig. 1B, except the fact that all samples (including hypermutated 

samples) were included. 

 

Table S3: GSEA analysis of pathways depleted and enriched in tumors with 
high versus low aneuploidy tumors 

Table S3a: The SCNA level was first calculated for all the tumor samples. EdgeR 

was utilized to compare the tumors with high versus low SCNA level (tumors with 

SCNA level higher than 70th percentile versus tumors with a SCNA level lower 

than 30th percentile), considering the tumor type as a covariate. Table S3a 

contains the results of the EdgeR analysis for each gene. The final score 

represents the negative log10 of the FDR multiplied by the sign of the log2 fold 

change (log FC), which was then utilized as the ‘weight’ to run the GSEA 

‘weighted’ enrichment analysis. A positive Final Score corresponds to genes 

enriched in high versus low aneuploidy tumors and vice-versa. 

Table S3b: Result of the GSEA analysis for the pathways enriched in tumors 

with high versus low aneuploidy, in a pan-cancer analysis. RNA seq analysis was 
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performed using EdgeR (Table S3a) and GSEA ‘weighted’ enrichment analysis 

was performed. 

Table S3c: Result of the GSEA analysis for the pathways depleted in tumors 

with high versus low aneuploidy, in a pan-cancer analysis. RNA seq analysis was 

performed using EdgeR (Table S3a) and GSEA ‘weighted’ enrichment analysis 

was performed. 

 

Table S4: GSEA analysis of pathways depleted and enriched in single 
tumor types comparing high versus low aneuploidy tumors 

Table S4a: RNAseq analysis was performed with EdgeR for each individual 

tumor type as for Table S3a, followed by GSEA analysis. The result of GSEA 

analysis for pathways enriched in tumors with high versus low aneuploidy is 

shown for the indicated tumor types. 

Table S4b: RNAseq analysis was performed with EdgeR for each individual 

tumor type as for Table S3a, followed by GSEA analysis. The result of GSEA 

analysis for pathways depleted in tumors with high versus low aneuploidy is 

shown for the indicated tumor types. 

Table S4c: Details on the immune cell types utilized for the analysis of gene 

expression within the Immgen database (https://www.immgen.org). 

Table S4d: List of genes utilized as specific markers of the indicated immune cell 

types and derived from the analysis based on the Immgen database. 

 

Table S5: Relationship between arm-chromosome SCNAs and focal SCNAs 
with the cell cycle and the immune signature scores. 

Table S5a: List of genes utilized for the calculation of the cell cycle signature 

score based on gene expression profile. 
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Table S5b: List of genes utilized for the calculation of the immune signature 

score based on gene expression profile. Note that this signature mainly 

represents CD8 T cells and NK cells-mediated cytolytic activities. 

Table S5c: Logistic regression for the prediction of the cell cycle signature score 

and the immune infiltrate signature score was performed utilizing the arm-chrom 

SCNA score and the focal SCNA score as parameters. The β-coefficients and p-

values are reported in this table. 

Table S5d: For each genome segment (800 genomic regions corresponding to 

cytogenetic bands), the frequency of amplification or deletion was determined, 

both at the focal and arm-chromosome level (see Methods) for each tumor type. 

The correlation (correlation coefficient and p-value) between the focal and arm-

level SCNAs is indicated for each tumor type.  

Table S5e, f: Lasso-mediated prediction of the immune infiltrate. For each tumor 

type, lasso was utilized to identify the best parameters predicting the cell cycle 

(Table 5e) or the immune infiltrate signature score (Table 5f) on the training set. 

The selected parameters were then utilized to refit a logistic regression model on 

the training set and the corresponding β-coefficients are shown for each 

indicated parameter and tumor type. A coefficient of 0.00 refers to parameters 

that were not selected by lasso. The resulting model was applied to the test set 

and area under the curve of the ROC (ROC-AUC) is shown for each tumor type. 

The number of mutations was considered as log-transformed and standardized. 

TP53 and age were considered as binary parameters, and all the other 

parameters were standardized. NAs indicate that the corresponding parameters 

were not applicable. The SCNA level was normalized within histological subtypes. 

Table S5g: Correlation between the SCNA level and the immune infiltrate 

signature score after normalization for the purity level for each sample. A 

threshold for the SCNA calls was determined for each patient based on its 

estimated purity level (from the pathology report) (Table 1). Arm and Chrom 
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SCNA level was determined and its correlation (Spearman) with the immune 

signature score was determined (Table 2).  

Table S6: Survival analysis in datasets of immunotherapy in melanoma 
patients. 

Table S6a: Survival Analysis in melanoma patients after anti-CTLA-4 treatment 

using the indicated parameters to predict survival. The data were derived from 

the following study: Van Allen et al., Science, 2015 (26). In all cases (except the 

one called 'Survival analysis: N mutations, threshold 100'), the patients were 

divided into two groups based on the median of the parameter or risk score and 

the Cox proportional hazards model was applied. In the case called 'Survival 

analysis: N mutations, threshold 100', a threshold of 100 mutations was utilized 

to group the patients. The hazard ratio (HR) and the Wald test p-value were 

determined. The proportional hazard assumption was also tested and the 

corresponding p-value is shown. 

Table S6b: Survival Analysis in melanoma patients after anti-CTLA-4 treatment 

using the indicated parameters to predict survival. The data were derived from 

the following study: Snyder et al., NEJM, 2014 (25). A similar analysis to the one 

described in Table S6a was performed. 

Table S6c: Survival Analysis in melanoma patients from TCGA using the total 

number of mutations, SCNA level or immune signature score as predictors. In all 

cases, the patients were divided into two groups based on the median of the 

parameter or risk score and the Cox proportional hazards model was applied. 

The hazard ratio (HR), corresponding Wald test p-value and C-Statistics were 

determined. When indicated, multiple parameters were included in the same 

model. 

Table S6d: Interaction analysis between SCNA score and immunotherapy 

treatment. The TCGA dataset of melanoma patients not treated with 

immunotherapy and the dataset of patients treated with immunotherapy (25, 26) 

were combined together. Multi-variable Cox proportional hazard model was 
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applied considering the combination of low SCNA level (bottom 50%) and 

immunotherapy treatment and combination of high N of mutations and 

immunotherapy as predictors (survival analysis 1). In addition multi-variable Cox 

proportional hazard model was applied also considering the same predictors in 

analysis 1 excluding the combination of SCNA level and immunotherapy and 

combination of N of mutations and immunotherapy (survival analysis 2). 

Table S6e: Gene set showing a positive correlation with the SCNA level and a 

negative correlation with the immune signature score was derived based on the 

TCGA dataset of melanoma samples (Table S6e). This score was used for the 

survival analysis shown in Fig. S9C. 

Table S7: TCGA dataset with clinical and molecular parameters. 

TCGA dataset with clinical and molecular parameters, including SCNA level, 

mutation numbers, cell cycle and immune signature expression scores. 

Table S8: Dataset with clinical and genomic parameters for the 
immunotherapy datasets. 

Table S8a: Dataset of genomic and clinical parameters from the study of Van 

Allen et al., 2015 (26), including SCNA level. 

Table S8b: Dataset of genomic and clinical parameters from the study of Snyder 

et al., 2014 (25),including SCNA level. 
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Additional issues regarding the mechanism of immune evasion addressed 
by the supplemental figures. 

One issue is whether dysregulation in proteasomal turnover could impact 

the immune infiltrate. We reasoned that an increase in the flux of unstable 

proteins through the proteosome might impact the presentation of neoantigens 

on MHC Class I in tumor cells with high levels of aneuploidy. Since the number of 

normal proteins vastly exceed the number of mutated proteins, we hypothesize 

that, in high aneuploidy tumor cells, the majority of unstable proteins funneled 

through the proteasome are made up of normal (e.g. not mutated) peptides. The 

resulting increase in self-antigens may compete with tumor neoantigens to 

reduce their presentation on MHC. The balance of this competition has the 

potential to impact CD8+ T cell mediated killing and immune infiltration if MHC I 

levels become limiting in the same way that reduced MHC I function might. We 

refer to this as the ‘flooding” hypothesis. If aneuploidy occurs early in tumors, 

which has been argued based recent analyses of clonal evolution in cancer (3, 

71, 72), then the neoantigens that accumulate later in evolution will be at an even 

greater disadvantage, being produced in an environment already ‘flooded’ by 

aneuploidy-derived non-antigenic self-peptides. The flooding hypothesis does not 

exclude the possibility that specific arm SCNAs (and/or focal SCNAs, such as 

PD-L1 and PD-L2, in some cases) can also contribute to immune evasion by the 

tumor. In fact, in HNSC and STAD focal SCNAs seem to play a role together with 

the arm/chromosome SCNAs in predicting the immune infiltrate.   

It is also possible that proteotoxic stress generated by aneuploidy could 

affect ubiquitin pools or impair the ER compartment to affect dynamics of MHC 

function or antigen loading in general to alter the immune infiltrate. Taken 

together, we propose a hypothetical and speculative explanation where it is not 

only the number of neoantigenic mutations per se that control the immune 

infiltrate but possibly the amount of neoantigenic peptides that can be presented 

on the surface and that this level may be controlled in part by the state of 

aneuploidy in the tumor.  


